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Generalized hydrodynamic equations have been proposed bikiketi¢c The-
ory and Irreversible Thermodynamics992) for modeling the motion of gases far
removed from equilibrium. His generalized hydrodynamic equations are consistent
with the laws of thermodynamics. In this paper, a computational method of solving
Eu’s generalized hydrodynamic equations is presented. It has been shown that the
new equations are applicable to all Mach numbers and indeed satisfy the second law
of thermodynamics at all Knudsen numbers and to every order of approximation.
The computational method of the generalized hydrodynamic equations is based on
the finite-volume formulation and is exactly the same as the compressible Navier—
Stokes codes, except for an additional routine for calculating the shear stress and the
heat flux from the given conserved variables and thermodynamic forces. To check its
validity and potential for hydrodynamics applications, the method is tested for the
structure of one-dimensional shock wave and for a two-dimensional flat plate flow
problem. The numerical results show that the new computational model yields the
shock solutions for Mach numbers tested, uptte= 30, and removes the singularity
near the leading edge of a flat plate that is ill-defined in the case of the Navier—Stokes
theory. © 2001 Academic Press

Key Words:rarefied and microscale gasdynamics; generalized hydrodynamic
equations; finite-volume method.

! Permanent address.

47

0021-9991/01 $35.00
Copyright© 2001 by Academic Press
All rights of reproduction in any form reserved.



48 R.S. MYONG

1. INTRODUCTION

Hypersonic vehicles at high flight altitudes experience various flow regimes: continut
slip, transitional, and free-molecular. Considerable parts of gas flows become highly r
equilibrium [20] because of the high Mach number and the low density, giving rise tc
large Knudsen number. A similar situation, although from a different origin, namely, a sir
scale of the characteristic length, can be found in microscale gas flows; a typical exar
is internal flows in the channels of a microelectromechanical system (MEMS) [2, 19].
a consequence of the high degree of nonequilibrium, the Navier—Stokes equations the
based on a smalldeviation from local equilibrium are inadequate for the aforementioned:
problems and new theoretical tools of analysis beyond the classical theory are necess

Much effort has been put into the development of such computational methods us
hydrodynamic and kinetic approaches in the literature. One of the most successful met
is the so-called direct simulation Monte Carlo (DSMC) method [6, 32], and it has been u
widely to investigate hypersonic rarefied gas flows. However, the computational cost is
high in the regime near the continuum limit because it is based on tracking a large nun
of statistically representative particles. To reduce the computational cost, hybrid metf
which couple an Euler or Navier—Stokes solver with the DSMC method were proposed [
Even though these approaches can provide some benefits, there exist nontrivial issL
resolve if such approaches are to be successfully implemented: (1) when to switch bety
the continuum and molecular theory methods; and (2) how to pass information from
method to another so that an uninterrupted run of the solution procedure can be smo
and continuously made.

However, there are computationally practicable methods that originate from the
netic theory of gases and come under the general category of the moment method ¢
Chapman—Enskog method. These methods produce basically continuum hydrodyn
equations such as the Burnett equations [14, 22], the Grad’s moment equations [16]
BGK—-Burnett equations [3], the moment equations based on the Gaussian moment
sure [7, 24, 25], and the moment equations derived by the so-called extended therm
namics [28]. However, it is known that most of equations have difficulty ensuring that t
second law of thermodynamics—one of the fundamental natural laws—is satisfied fol
conditions of flow? The absence of the consistency with the laws of thermodynamics
the aforementioned hydrodynamic approaches manifests itself in some defective beh
of the computed solutions with regard to some aspects of the flow problem, when eithel
shock-structure problem at a very high Mach number or the rapidly expanding flow [9]
considered.

In this study, we consider an alternative method such that the second law of thermc
namics is satisfied to every order of approximation or by whatever approximation m:
to the distribution function. This thermodynamic consistency requirement is enforced
identifying the quantity that is mathematically representative of the second law of therr
dynamics. This quantity is called the calortropy, which reduces to the entropy knowr
equilibrium thermodynamics as the processes become reversible. In this regard it is u:
to recall that in thermodynamics the entropy is defined for reversible processes only.
calortropy can be shown to obey a nonnegative inequality directly related to the H theo

2 For example, refer to papers [3, 9]. It is safe to say that the entropy production of the Burnett-type equat
is not proved to be positive for all Knudsen numbers and flow conditions.
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obeyed by the Boltzmann kinetic equation. The nonnegative inequality associated witt
calortropy production provides us a thermodynamically consistent hydrodynamic equat
for flow processes far removed from equilibrium. For further details of this line of theory t
reader is referred to the original literature [12, 13]. The salient basic elements of the the
are the nonequilibrium canonical distribution function and the cumulant expansion for
Boltzmann collision term. Especially, the cumulant expansion may be regarded as a ps
resummation of the expansion of the Boltzmann collision integral in a series of the Knud
number, and as such, it takes into account highly nonlinear irreversible processes to in
order. The first-order cumulant expansion takes a form of hyperbolic sine function wh
argument is given in terms of basically a Rayleigh dissipation function. It turns out tl
the new equations possess an unusual feature that the two extreme regimes of rarefie
high density are adequately covered; in other words, that both free-molecular and col
uum limits are uniformly described by the single formula of nonlinear dissipation functi
arising from the first-order cumulant expansion for the Boltzmann collision integral. T
thermodynamically consistent set of hydrodynamic equations are called the general
hydrodynamic equations, and were applied to calculate the shock profile for high M
numbers, up tM = 30, in the works [1, 30]. It was shown that the results are comparat
with the Monte Carlo simulation results and are in good agreement with experimental d

There exists, however, a stiff challenge posed by Eu’s generalized hydrodynamic e
tions as a computational tool for the simulation of gas flows in the multidimensional proble
because they are highly nonlinear and complex. It was found in the previous work [30]
the difficulty mainly resides in the complicated highly nonlinear form of the constituti
relations. The nonlinear terms, which appear in the form of a hyperbolic sine function,
intimately related to the calortropy production in the system. Because of the aforementic
nonlinear terms, it becomes apparent that the generalized hydrodynamic equations ¢
be putinto the hyperbolic system of partial differential equations, for which many numeri
methods are available. For this reason, the constitutive equations, which are in the forrr
nonlinear algebraic system and are coupled with the hyperbolic conservation laws, mu
solved by an iterative method. Since the system involves six components of stress tensc
three components of heat flux vector, the computation will be very demanding. Howe
by observing that higher order variables (stress and heat flux) change far faster thal
conserved variables, a method to overcome the computational difficulty can be found.
idea is to solve the constitutive equations with the conserved variables held constant ¢
the conserved variables will remain constant on the time scale of change for the higher
variables such as the stress tensor and the heat flux.

In the present work we aim to develop an efficient multidimensional computatior
method for Eu’s generalized hydrodynamic equations on the basis of the aforementic
idea, which is in essence the foundation of the so-called adiabatic approximation [12,
This idea is in fact akin to the center manifold approximation [18]. Our interest here |
mainly in the development of a computational method for the generalized hydrodyna
constitutive equations, but not in a numerical method of the hyperbolic conservation Iz
In particular, the main aim is to develop an efficient method for the calculation of the sh
stress and the heat flux for multidimensional problems.

A key feature of the present computational method is that it is based on the hydrodynze
equations, which are proven to be consistent with the thermodynamic laws and compa
with the underlying macroscopic irreversible thermodynamics and at the same time are
restricted to small Knudsen numbers. In principle, it should yield solutions for all Knuds
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numbers and under any flow condition. Another feature is that the mathematical sys
of equations, like the Navier—Stokes equations, is of parabolic type. The parabolic t
equations are used on the ground that it is very hard to find any preferential direc
of propagation in high-order moments (stress and heat flux), contrary to the case \
conserved variables whose evolution must be restricted by the hyperbolic conserve
laws. Such choice is also motivated from previous studies where, except for certain extr
conditions, the Navier—Stokes equations are shown to remain surprisingly robust [21].

The present paper is organized as follows. First, some characteristic features of the
eralized hydrodynamics are discussedangs other mathematical models for gas transpol
in the nonlinear regimes. We then introduce a generalized hydrodynamic computati
model and slip boundary conditions. In Seota computational method is developed for
solving the generalized hydrodynamic equations. Specific differences between the pre
method and previous methods will be discussed and pointed out. In the last sectior
present some numerical results in order to evaluate the present model and the conclus
given.

2. MATHEMATICAL MODELS FOR RAREFIED
AND MICROSCALE GAS TRANSPORT

Inthe nonlinear regime or processes occurring far removed from equilibrium, for exam,
in rarefied and microscale gas transport, the mean free path becomes comparable wii
characteristic length of the system. As a result, the Knudsen number becomes large.
the linear fluid dynamic approximations taken for the constitutive relations for the str
tensor and the heat flux in the classical hydrodynamics are valid in the regime of sr
Knudsen numbers, the Navier—Stokes equations become inadequate, and it is nece
to use mathematical models in which the microscopic molecular nature of gas is fi
taken into account so that the large Knudsen number regime is properly accounted
Such mathematical models range from the Boltzmann equation, the DSMC solutions,
the high-order fluid dynamic equations to either the deterministic equations of moti
which are solved by molecular dynamics methods, or probabilistic equations, such ac
Klimontovich equation and the Liouville equation, which are solved by the Monte Cal
method. The fluid dynamic equations should be derived from the solution for the Boltzm:
equation that in principle yields a theory of macroscopic irreversible processes compal
with thermodynamics, if proper care is exercised in solving the kinetic equation so a:
satisfy the thermodynamic laws.

Mathematical models and solution methods for the description of the motion of ga
are summarized in Fig. 1. Only the generalized hydrodynamic equations are taken
illustration, but other fluid dynamic equations may be used for a similar purpose. It can
easily seen from Fig. 1 that the Boltzmann equation plays a central role in the hierarch
mathematical models. It was derived as an evolution equation for the singlet distribuf
function of a gas by considering the collision dynamics of two particles and combini
it with a statistical assumption in the form of the molecular chaos. Since the molect
chaos assumption is not of a mechanical nature, the Boltzmann equation is not a pt
mechanical equation of motion for a gas but should be regarded as a fundamental equat
the mesoscopic level of description of macroscopic processes in a dilute gas. Although
a first-order differential equation in space and time, its solution becomes very complice
because it is nonlinear owing to the collision integral, which is made up of products
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Viewpoint of Mathematical Solution

Description Models Methods

Deterministic Classical (quantum) Molecular

Molecular equation of motion Dynamics

Probabilistic  Klimontovich Liouville  Monte Carlo

Molecular equation equation

Molecular
J'l chaos J'l >
Boltzmann equation DSMC Direct

CFD

| Thermodynamics

Hydrodynamic Generalized CFD
Continuum hydrodynamics (GH)

|| Eu's closure
GH 13 moment equation

|| Smail deviation from LTE
Navier-Stokes-Fourier

|| Local equilibrium

Euler

FIG. 1. Mathematical models and solution methods for the description of the motion of gases.

distribution functions. There can be an infinite number of solutions admissible for
kinetic equation, from which a thermodynamically compatible solution must be chos
This means that given the Boltzmann equation as the kinetic equation the thermodyna
on the evolution of macroscopic variables are necessary to obtain the phenomenologi
correct solution.

Conversely, the DSMC method is fundamentally different from solution methods
the Boltzmann equation in the sense that it is not based on any mathematical equat
but simulates directly the motion and interaction of particles. In essence, it starts from
Liouville equation and tracks down a large number of statistically representative particle:
suitably taking into account the effect of particle collisions. Since this process correspc
to the introduction of the molecular chaos assumption, it is generally believed that
DSMC method is equivalent to solving the Boltzmann equation for a gas undergoing bir
collisions.

The derivation of fluid dynamic equations from the Boltzmann equation begins witt
realization that there exist three collision invariants in the Boltzmann equation: mass, t
momentum, and energy. These are nothing but the hyperbolic conservation laws whict
be also derived from the viewpoint of continuum mechanics. A difference can be fot
in methods to derive the equations of high-order terms, namely, the shear stress an
heat flux. There exist two basically different methods: the Chapman—Enskog method
the moment method. In the Chapman—Enskog method, the equations of high-order t
are derived by expanding the distribution functions, under the assumption of functic
hypothesis, in series of Knudsen number and by substituting them into the Boltzm
equation to generate a hierarchy of equations, which are then sequentially solved.
hydrodynamic equations appear as the solvability conditions in this method. In the mon
method, the hydrodynamic equations are obtained by expanding the distribution funct
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in moments, and the evolution equations for moments are derived from the Boltzm
equations by using the macroscopic variables for the moments assumed. It turns out
both methods yield the Navier—Stokes equations as the first-order approximation for
nonconserved variables such as the stress tensor and the heat flux, but there rem:
serious problem that the resulting high-order equations beyond the first order may
generally be consistent with the thermodynamic laws. One of the reasons for this prok
is that the second law of thermodynamics is not fully incorporated into the formulations
these methods, even though the laws of thermodynamics govern macroscopic irrever
processes and play a critical role in yielding the phenomenologically correct solutions
the Boltzmann equation.

However, Eu’s generalized hydrodynamics are derived in a way that the resulting ec
tions are completely consistent with the second law of thermodynamics to every orde
approximations that may be taken. As in the moment method, distribution functions
assumed to evolve as functionals of macroscopic moments, but their flux dependen:
derived from a careful examination of the H theorem as well as the calortropy product
associated with the H theorem. For the detailed discussion of the subtlety of the Boltzmm
kinetic theory and Eu’s generalized hydrodynamics, the reader is referred to his orig
work [10, 12, 13].

3. EU'S GENERALIZED HYDRODYNAMIC EQUATIONS

3.1. Governing Equations

A thermodynamically consistent hydrodynamic computational model of the consen
and nonconserved variables has been developed by Myong [30] on the basis of Eu’s
eralized hydrodynamic equations. If the following dimensionless variables and parame
are used,

t" =t/(L/u), X*=x/L, n*=n/n, A"=i/A, U =U/U, p"=p/pr,
T*=T/T,. p*=p/p. E*=E/Z II"=TII/(pu/L), Q" =Q/(LAT/LT),

the dimensionless evolution equations of a monatomic gas in the generalized hydrodyna
can be written as

ou

E + V- I:T = 07 (1)

and
IIq(cR) = Iy + [II- V] @, )
QqcR) = Qo+ 1I- Qo. 3)

Here,IT, andQy are determined by the Newtonian law of viscosity and the Fourier law
heat conduction, respectively:

ITp = —27[Vu]®, Qp= —AVInT.
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The asterisks are omitted from the aforementioned equations for the notational brevity

0
U= | pu |,
pE
ou 0
= uu + —i pl 1 II
= '0 )/M2 p ) FU = R_e )
(,OE+V7,%,,2p)U I u+EgPrQ
R N ~ N
fizNpg 6=NM_°Q
p P VT/(2€)
N 1
Vi = —Zn—avu, €= ,
p PrECT, /AT
andq(clfz) is a nonlinear factor defined by
sinh(cR)

q(cR) =

)

cR
R=ILII+0Q. Q.

TheU is the vector made up of conserved variableskptepresents the sum of the inviscid
flux vectorF and the viscous flux vectd¥,. TheIl andQ represent the shear stress anc
the heat flux, respectively. The symbal(j]® stands for the traceless symmetric part o
tensorvu and the termII - Vu]® represents the traceless symmetric part of the couplir
between the shear stress and velocity gradient tensor. It should be mentioned that i
present study the ter® - V) /2Pr appearing in the original constitutive relation of hea
flux [30] is omitted from the constitutive relation (3) for the sake of simplicity. MheRe,
Ec, and Pr are dimensionless fluid dynamic numbers: Mach, Reynolds, Eckert, and Pr:
numbers, respectively. The careter a symbol represents a quantity with the dimensio
of the ratio of the stress to the pressure. The subscinds for the reference state; for
example, the state of the inflow condition. The constamthich is given by

rNe 12

c= A4 —2/(v = D]| (4)

has a value between 1.0138 (Maxwellian) and 1.2232 @), wherev is the exponent of
the inverse power law for the gas particle interaction potential.Adie) is a pure number;
its tabulated values are available in the monographs on kinetic theory [8]y Hmel A
are the Chapman—Enskog viscosity and thermal conductivity. They can be expresse
n=TS =T wheres=1+2/(v —1).

For a monatomic gag, = g and Pr= % For a perfect gas, the following dimensionless
relations hold:

p/yM? 1

+ —pu-u. (5)

=pT, pE
p=pT, p 1 12
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A composite number, which is defined by

_ meur/L B M2

2
y— —KnM/ L,
pr Re T

measures the magnitude of the viscous stress relative to the hydrostatic pressure, so
indicates the degree of departure from equilibrium. It should be emphasized that terms ii
present constitutive relations appear multiplied by the composite nuNyb&hrough this
number the new hydrodynamic Eqgs. (1)—(3) take into account the effects of high Knud
and Mach numbers. Al¥s becomes small, the Navier—Stokes—Fourier constitutive relatio
are recovered from the constitutive relations (2) and (3):

N;

II=II, and Q = Qq. (6)

The unique feature of the new set of hydrodynamic equations is the existence of a hi
nonlinear factor(cR) in the constitutive relations. It depends on a paramBtewhich
is directly related to the Rayleigh dissipation function and gives a measure of depar
from equilibrium. This nonlinear factay(cR) describes the mode of energy dissipatior
accompanying the irreversible processes and directly related to the calortropy produc
in the system [12]:

Oent ™ F}Zq (c ﬁg) (7)

SinceR?, which is the sum of the double contraction of stress tensors and the dot proc
of heat flux vectors, angl(cR) always remain positivesen:is inherently positive regardless
of the value of the Knudsen number, the order of approximations, and flow conditions.

Another feature is that the new equations are frame-independent; in other words, the:
not dependent on the motion of the observer. This is related to the fact that the genera
hydrodynamic equations can be made corotational by using the Jaumann derivative
Not all of the previously mentioned hydrodynamic equations satisfy such property, wher
the Navier—Stokes equations alwaysdo.

3.2. Boundary Conditions

The hydrodynamic Egs. (1)—(3) are subject to boundary conditions. The common prac
in rarefied and microscale gasdynamics is to employ some type of slip boundary conditi
for example, the Maxwell-Smoluchowski condition. Although this slip boundary conditic
turns out to be satisfactory for many problems, there exists growing evidence [2] that it pl
a crucial role in determining the overall flowfield in microscale gas flows. Itis based on
notion of accommodation coefficients which measure the slip effects at the solid bound
depending on the gradient of tangential velocity and temperature. Under the assumpitic
uniform temperature, it can be simplified as

u:uw+(2_°)|<a“> . ®)

o \an

3 There remains the general question of whether constitutive relations should be frame-independent or not. |
however, generally accepted that correctly formulated constitutive relations were necessarily frame-indepel
[37].
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The subscripiv stands for the wall antdis the mean free path. The slip velocity depend
on the mean free path, that is, the Knudsen number, accommodation coefticiantsthe
normal gradient of the tangential velocity. The case 6f 1 represents perfect diffusive
reflection. However, it should be noticed that the slip velocity is unbounded since either
value of the Knudsen number or the normal gradient of the tangential velocity can be \
large?

Itis alsoinstructive to mention that owing to the presence of an adjustable coeffitiest
condition loses the predictability. Consequently, handling the boundary condition for hi
Knudsen-number gas flows becomes problem-dependent. Some calculations indicate
the general solutions were highly dependent on the exact value of surface accommod
coefficients [26] used.

In the present study, a new boundary condition is considered that not only recovers
predictability but also facilitates a hydrodynamic treatment of the entire density regi
with a single formalism. It is expected that the present method can avoid the probl
inherent to the Maxwell-Smoluchowski condition. The present method takes the interfa
gas—surface molecule interaction into account. A fraaiaf molecules reaching thermal
equilibrium with the wall can be expressed, in the dimensional form, as [5, 29]

oy Bp
1+ 8p’

where the paramete# depends on the wall temperatufg and the interfacial interac-
tion parameters. By imagining the gas—surface molecule interaction process as a che
reaction, it is possible to express the paramgtirthe form

Al De ¢

B= T exp( kBTw> i (10)
wherekg is the Boltzmann constant, and whekas the mean area of a site aig is the
potential parameter. These parameters can be inferred from experimental data or theor
consideration of intermolecular forces and the surface—molecule interaction. The subs
r stands for the reference value such as the value at the free-stream or the local
adjacent to the surface, afds a mean collision distance between the wall surface and t
gas molecules at all angles [5]. When the characteristic ldnighaken equal té, thet/ I,
is equivalent to IKn. When the free-stream mean free path is takef) adbecomes unity.
With « so calculated, the boundary values of temperature and velocity can be determ
by the weighted means

©)

T=aT,+A-)T, (11)
U=aU, +(1—a)u,. (12)

In the multidimensional problenuy, should be interpreted as the magnitude of the velocit
vector. In contrast to the Maxwell-Smoluchowski boundary condition the new bound
condition does not involve the gradient of velocity and is always bounded by the refere
value; this seems to be physically more sensible. A simple expressigrcéor be obtained

4 A general velocity slip boundary condition has been developed by Beskok and Karniadakis [4] that rem
bounded for all Knudsen numbers. It must be, however, noted that there still exists a possibility of unbound
from a smallo or from a large gradient of tangential velocity.
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after some manipulation,

2
[7 =i De V¢ 1
L I 1
p= C2dSTF> |:273} Tw eXF( kBTw) Iy Pr ’ ( 3)

whered represents the diameter of the molecule. In deriving the Eq. (13) from (10),
addition to the equation of state and the definitior gfven in (4), the relations

| =, /21
V2 pJRT

5 mkg T
8A,(V)I'[4 — 2/(v — 1)]d? T

1
K s
d= (2k5T> :

were used, whena is the molecular mass ardlis the coefficient of the inverse power law
of interaction. For an Ar—Al molecular interaction model,

7’]:

De = 1.32kcalmol, A=5x 10*®cn?, dsrp= 3.659x 10 8cm.
The parameteg reduces to

51120 T\ o 88423\ € 1
o 273) T, T, JIi p’

In Fig. 2 the fraction of molecules reaching thermal equilibrium in the gas—surface interf
as a function of pressure is plotted in logarithmic scale.

1.5

o “F

ULLEN LRARY LLANY LLERY LARRY LRRRN LRRRY RARRYN LARES LRRN]

O L J 2 I L ] L L Ll I L 1 I | I
10° 107 10°
Pressure/Atmospheric pressure

FIG. 2. Fraction of molecules reaching thermal equilibrium in the interface as a function of pressure
logarithmic scale{ = L = 1 um, T,, = 300 K).



EU’'S GENERALIZED HYDRODYNAMIC EQUATIONS 57

In summary, the fraction of molecules reaching equilibrium depends on the Knudse
number, free-stream and wall temperature, exponent of the inverse power, lamggas—
surface parametei8e and A. With an interfacial gas—surface molecule interaction mod
the present generalized hydrodynamic equations require no more conditions beyon
boundary conditions of the Navier—Stokes equations.

4. CFD ALGORITHMS

The generalized hydrodynamic Egs. (1)—(3), as is the case for the well-documel
Navier—Stokes equations, must satisfy the collision-free hyperbolic conservation laws,

2 UdV+j£FT -ndS=0,
whereS represents the bounding surface of the control voldnélere it should be em-
phasized that these laws are the exact consequence of both kinetic theory and contil
mechanics. Only after some approximations are made to nonconserved variables (
and heat flux), do they become approximate fluid dynamic equations. Therefore, mo:
modern CFD schemes based on the hyperbolic conservation laws can be applied to tre
these equations. In the present study, the upwind scheme with van Leer’s flux vector spli
solver [35] is used. The one-dimensional discretized form of the hyperbolic conserva
laws in the finite volume formulation can be expressed as

At
1
UMttt =ul - X [F?H% - F%J’ (14)
whereU is the cell-averaged conserved variables s the size of -cell, At is the time step,
andF is the numerical flux function which gives the flux through cell interfaces. Note th
in the finite volume formulation the shear stress and heat flux are defined only on cell
faces. Second-order accuracy can be obtained by using the MUSCL-Hancock method

4.1. Main Features

Together with these algorithms on the conservation laws (1), an algorithm to solve
nonlinear algebraic system of constitutive relations (2) and (3) must be developed. It sh
provide the shear stress and heat flux, which are essential to define the numerical
through cell interfaces. In the present work, they will be solved by an iterative method
given thermodynamic variables (pressure and temperature) and the gradients of vel
and temperature.

This process is trivial in the Navier—Stokes equations since the shear stress and
flux can be eliminated from the hyperbolic conservation laws. The resulting laws invo
only the conserved variables and thermodynamic forces of the gradient of velocity
temperature.

The situation, however, becomes very different in the case of other high-order mon
equations. For example, in the case of the moment equations based on the extendec
modynamics, the constitute equations are derived in a way that the whole system |
hyperbolic type. Thus the numerical algorithm based on the hyperbolic conservation |
is applied not only to the conserved variables but also to higher order variables such a
stress and the heat flux. As a result, the aforementioned moment methods do not re
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any procedure to solve the algebraic equations but must solve a hyperbolic system
more variables, for example, the 35-moment equations in the case of Ref. [7]. In pract
they also require a wall boundary condition for higher order variables, which often becor
difficult to determine, if not impossible.

From this consideration, it becomes apparent that the present numerical method sl
more common features with the Navier—Stokes method than with other moment meth
It is based on the hyperbolic system with five components of conserved variables.
additional step is needed only when stress and heat flux appearing in the flux of the sy
are calculated from the nonlinear algebraic constitutive equations.

4.2. Solutions of Constitutive Relations

In general, the constitutive Egs. (2) and (3) consist of nine equation$,qf (Txy, Mx,
Myy, Myz, ;2 Qx, Qy, Q) for known 14 parameter( T, Vu, Vv, Vw, VT). Because
of the highly nonlinear terms, it is, however, not obvious how to develop a proper numers
method for solving the equations. Nevertheless, it was shown [30] that they can be so
by a numerical method in the case of a one-dimensional problem.

In the case of a two-dimensional problem the stress and heat flux compdigntslky,
Qx) on aline in the two-dimensional physical plane induced by thermodynamic farges (
vx, Tx) can be approximated as the sum of two solvers: (1) ona®(Ty) and (2) another
on (0,vy, 0). In the three-dimensional probleni]x, I1xy, I1x;, Qx) on a surface can be
approximated as the sum of two solvers: (1) onewn @, 0,Ty) and (2) another on (@,
wy, 0). Here we present only the two-dimensional case because it can be easily exte
to the three-dimensional problem by notiqg, wx) = (v cosd, v sinf) where

w
v=/v2+ w2, 6=tanl=,
Ux

In the previous work [30], it was shown that the equations for the first solver are given

l:[><><C](C|A?) = (Myx + 1)ﬁxxo, (15)
Qxa(CR) = (TMxx + 1) Qy,, (16)
where
A, 3. .
R? = Enix + Qi

The factor 32 in R? originates from the symmetry relation

~ ~ 1.
1_[yy =Tz = — Ty«

The equations for the second solver are given in the form

~ ~ 2 A ~
Hquz(CR) = _é(nxx + 1)1_[2 (17)

XYo’
where

éz = 3ﬁxx(ﬁxx - 1),
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which follows from the symmetry relation

1:Ixx = lA_[zz: _ényy

and the constraint

R R 3 . R 1/2
Iyy = sign(Tlxy, ) —E(l'[xx + DII,| . (18)

These can be solved by the method of iteration, which turned out to provide conver
solutions within a few iterations. For mathematical proof of convergence, the reade
referred to the previous work [30]. The iteration procedures can be summarized as follc
In the solver onuy, 0, Ty), for posmvel‘lXX and Qx,

. 1 . .
Rt = - sinh* [c(Txx, + 1) Ro]

and

ijnJrl _ an — QXO

= = s
Hxan 1_[xxn 1_[xxo

and for negativel,, and Oy,

. fl
XXn4l — A~ &
" q(CRy) — Ty

and

~ (ﬁxxn+1)©xo
Qe = qCcRy)

In these expressionﬁlxXl and Qxl are given by the equations

. sinh1(cRy) -~
1_Ixxl = 7A0) XXo»
cRo
. sinhr 3 (cRy) -
Qxl = T ono

In the solver on0, vy, 0), the I1,4 can be obtained for a givel?lXyo through the equation

2
ﬁ _ nyo
XXnt1 —

302(CR)/2+ 112,

The ﬁxy can be calculated by using the constraint (18).

The general properties of constitutive relations are shown in Fig. 3a, and 3b. Figure
shows the asymmetry of the normal stress for rapid expansion and compression of gz
this figure the heat flux is assumed to be equal to zero for the sake of simplicity. It has k
reported that the augmented conventional Burnett equations produce a severe insta
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FIG.3. (a)Generalized hydrodynamics, and second-order Burnett constitutive relations relative to the Na\
Stokes relations (argom, only, no heat flux). The horizontal and vertical axes represent the Navier—Stok
relationsf[xxo and the relationsl,,, respectively. The gas is expanding in the rangeﬁgfo < 0, whereas the
gas is compressed in the rangel:m‘XO > 0. (b) Generalized hydrodynamic constitutive relations relative to th
Navier—Stokes relations (argow, only). The horizontal axis represents the velocity gradigrig or I:IXyD. The
vertical axis represents the normal,{) and shearl{,,) stresses.
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near the point where the flow separates at the shoulder of the hypersonic vehicles [2
was suggested that the instability is caused by the problems that a rapidly expanding
exhibits a negative entropy production (more properly, the calortropy production) in
Burnett-type formulations. The origin of the instability can be explained by examining t
second-order Burnett equatiam(only)

ﬁxx = (ﬁxxo + 1) ﬁXXO'

The corresponding entropy production [9], which can be written in the one-dimensio

problem as
n (ou 2 1 5n ou
O’ ~ — — _——
et T\ ax 3pax]’

can be negative when the gas is rapidly expanding, or when

6

HXXO < —g

The loss of one-to-one correspondence in Fig. 3a is a sign of such nonphysical behe
By contrast, the new relations will not suffer such an unphysical feature since they alw
yield positive calortropy productlon
Figure 3b demonstrates th(al‘t[xX + 1) or (Ilyx + p/Ns), as well asl‘[Xy of the new

relations, approach zero as the tangential velocity gradient becomes very large. Suc
asymptotic behavior indicates that the new relations have a correct free-molecular li
implying that the velocity-slip phenomenon caused by the non-Newtonian effect can
explained in purely hydrodynamic terms. The details of properties of the new constitu
relations are given in the previous work [30].

4.3. Numerical Flux in the Finite Volume Formulation

The numerical flux through the interface in the Eq. (14) in general non-Cartesian dom:
can be determined by exploiting the rotational invariance of the conservation laws. Le
consider thé-th intercell boundanA L, of finite areaA; j in two-dimensionalx, y) space.
Let (n, s); be the outward unit vector normal to th¢h boundary, and let the unit vector be
tangent to thé-th boundary with the convention that the interior of the volume always lie
on the left-hand side of the boundaryélfis defined as the angle formed by thelirection
and the normal vectar, it can be shown that the Eq. (14) becomes

urt=up; - A Iz; RIFL AL (19)
where
0
U= - ,
PV
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u
PUn 0
. PUZ + i 1 Mo
| = ) = 5. )
pUnUS . Re Hns

Innun + ThsUs + ﬁrQn |

(PE+ Sz P)un /|

andR, = R(6)) is the rotation matrix, namely,

1 0 0 0
0 cos¥ sind O
R©) = 0 —sind cos® O
0 0 0 1

TheN is the number of interfaces in a cell. In this process a transformation law between
components of the tensor in the () coordinatesiI) and the components of the tensor in
the (, s) coordinatesXl) is used [15]:

I = RIR. (20)

The extension to the three-dimensional problem is also straightforward. Consitiéinthe
intercell surface boundar§ of finite volumeV;  « in three-dimensionalx, y, z) space.
Let (n, s, t); be the outward unit vector normal to théh boundary, and let the unit vector
be tangent to the-th boundary with the convention that the interior of the volume alway
lies on the left-hand side of the boundarydP? and6’ are defined as rotational angles
about thez andy axes, respectively, it can be shown that the Eq. (14) becomes

N
At _
k=l ﬁZRI 'FRAS, (21)
LK =1
where
0
ou
Uijk=| pv )
oW
PE/ ik
pUnp 0
u 4+ -, I
p n ]/M2 p 1 nn
F = pUnUs > Fm = R_ Ins ,
e
PUnUt Mot
(,OE + y_l:\L/IZ p)un | [MnnUn + TnsUs + TIneUe + ﬁrQn |

andR is the rotation matrix, given as

R = R(Y)R(Z),
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where

1 0 0 0 0
0 co®¥™¥ 0 sine» 0

R =10 0 1 0 0l.
0 —sind® 0 coxk® 0
0 0 0 0 1
1 0 0 0 0
0 cos@ sing@ 0 0

R?=10 —sing@ coss@ 0 0
0 0 0 10
0 0 0 01

As in the two-dimensional case, the components of the tensor irxthe %) coordinates
(IT) are related to the components of the tensor in ths,(t) coordinatesXI) through the
transformation law (20).

4.4. Time-Step and Numerical Boundary Conditions

It turns out that for the generalized hydrodynamic equations, the stability condition

At = CFL - min(Aty, Aty), (22)
where
At — M AX  2nM
YT el T a2 |
M -1
Ap=m| BT
AX  pAX?

works well for upwind schemes. Notice that the Mach number appears in these relati
The reason is that the characteristic speed in dimensionless form bezovh@sstead of.

For givenT,, T;, u,, Ur, and pr, Egs. (11) and (12) and the mechanical balance conc
tion (zero normal gradient of pressure) yield the boundary values of temperature, tange
velocity, and pressure. From these values the boundary value of the density can be
mined by the perfect gas relation. The velocity normal to the surface can be assumed
zero. For artificial boundaries, inflow and outflow conditions based on the number of E
characteristics can be employed.

4.5. Numerical Implementation

The discretized form of the governing generalized hydrodynamic equations in the fi
volume formulation (19) or (21), a time-step restriction (22), and the boundary conditic
(11) and (12) are the basic building blocks of the present numerical method. It resem
numerical methods for the compressible Navier—Stokes equations in that they all s
the hyperbolic conservation laws. The present scheme, however, differs from the |
methods in the manner of calculating the viscous flux. The viscous terms in the Nav
Stokes equations can be expressed in a linear combination of entries in the Hessial
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matrix V(nVu), so that they can be transformed into an expression involving only the fi
derivative ofu. Such a transformation cannot be applied to the generalized hydrodynal
equations because the stress is a nonlinear functigvaf The stres$I and heat fluxQ
must be retained in the discretized forms (19) and (21). The value of the stress and hea
can be determined with the help of the Eqgs. (15)—(18).

5. NUMERICAL EXPERIMENT

To demonstrate the capability of the new hydrodynamic equations, we consider
challenging problems: hypersonic shock structure and two-dimensional flat plate flow. Si
our main interest lies in the development of a multidimensional computational method,
second problem will be studied in detail. The gas is assumed to be Argon (with&5 in
the coefficient of viscosity, or = 9, andc = 1.0179 [30]) in all test cases. In general, the
initial data necessary to define a well-posed problem consist of dimensionless param
(M, Kn, or Re), thermodynamic value$,(, T.,), gas properties (s ar, dstp), and gas—
surface molecular interaction parametdds,(A).

5.1. Shock Structure Problem

Although the hypersonic shock structure problem [1, 14, 17] does not involve any sc
boundary, it has been known that the numerical calculation of the shock structure pres
serious theoretical and computational challenges, and the hydrodynamic approaches |
on the moment methods mentioned earlier all fail to yield shock solutions beyond a relati
small value ofM, typically M < 2. Here, the shock structure is computed for a very hig
Mach numberi = 30) with a grid of 400 points, which isillustrated in Fig. 4. The second
order accuracy was maintained in this computation. The CFL number is takeB.a% 0
steady-state solution was considered to be obtained when the rms norm for the de
dropped below 1. The general configuration of the shock structure was shown to be
good agreement with the results based on the DSMC calculation. (The reader is refe
to Al-Ghoul and Eu’s work based on the system of ordinary differential equations [
where the shock solutions are shown to exist for all Mach numbers, and Myong’s w
of a Maxwellian gas based on the system of partial differential equations [30].) Her
calculation is presented to demonstrate that the current code has no difficulty in yieldir
solution for the very high Mach numbers (uphb = 30) studied.

5.2. Two-Dimensional Flat Plate Flow

The second problem is the hypersonic rarefied flat plate flow [26, 34, 38] in which
so-called slip phenomenon is an important mechanism in determining the overall f
properties. This problem is one of fundamental interest since it generates a wide rang
basic flow phenomena, for example, shock waves and slip flow.

In Figs. 5 and 6, the hypersonic rarefied flat plate flows=£ 12.9, Kn = 0.0067,

T, = 54T, Too = 200 K) are described. The computational domain is defined by a re
angle of size 25 x 0.4 with an equally spaced grid of 12048 points. It was checked by

increasing the grid points whether the numerical results converge. Instead of the so-c
Maxwell-Smoluchowski condition, a gas—surface (Ar—Al) molecular interaction model
used that depends on the pressure and temperature and provides the boundary vall
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FIG. 4. Mach 30 shock profiles of normalized variables for argon gas. Normalized variables are base
the upstream and downstream states. For example, the normal density is defined @3/ (0. — p1) where the
subscripts 1 and 2 represent the upstream and downstream states, respectively. Solid line with circles: gene
hydrodynamics (GH); solid line: Navier—Stokes (NS). The horizontal axis represents the spatial coordinate rec
by the mean free path)(at the upstream condition. The inverse of the shock density thickness{(GH743,
NS — 0.2152).

temperature and velocity. The free-stream mean free path is taken as a mean coll
distance. The mirror boundary before the wall was introduced to prevent the disturbe
affecting the inflow boundary. The boundary condition at the outflow was specified by
trapolation. The slip condition on the wall was applied by defining the dual ghost cells,
for the inviscid part where the boundary values of velocity and temperature are speci
and another for the viscous part where the values at the wall are used. Due to the larg
ference between the wall and free-stream temperature, a relatively small CFL nutniser (
used. Since our main goal is to develop a multidimensional numerical method for Eu’s ¢
eralized hydrodynamic equations, for simplicity only first-order accuracy was maintair
throughout the computational domain including the boundaries. More study will be nee
on the second-order-accuracy upgrade and effects of boundary conditions. Exactly the
conditions, including the slip boundary condition, are applied to both Navier—Stokes
generalized hydrodynamics codes.

Numerical experiments indicated that the computing time of the two-dimensional g
eralized hydrodynamics code is comparable to that of the Navier—Stokes code. The e
load, which is caused by the addition of a few iterations of constitutive relations (less tl
10 in most cases), occupies a small fraction of computing time in the code.

The general flow properties illustrated in Figs. 5 and 6 are qualitatively similar to t
result [38] based on the DSMC calculation. The contours of density show the separatic
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FIG. 5. Contours of constant density. (a) Generalized hydrodynamics; (b) Navier—Stokes. The solid \
begins atx/L = 0, whereL is the length of the plate (= 15d,,).
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FIG.6. Contours of Mach number. (a) Generalized hydrodynamics; (b) Navier—Stokes. The solid wall be
atx/L = 0, wherelL is the length of the plate(= 150.,).
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the oblique shock wave and the boundary layer. The density increases across the shoc
it then decreases. The maximum line of density can be observed in both Navier—Stoke:
generalized hydrodynamics results. The Mach contours show that the velocity slip is I
near the leading edge and becomes small in the latter half of the plate. The slip is slig
larger in the case of generalized hydrodynamics. It can be also seen that the genere
hydrodynamics results are less smooth near the leading edge than the Navier—Stokes re
This may be because the high gradient surface in the case of generalized hydrodyne
is not well aligned with the grid lines. Finally, some interesting results can be found frc
the comparison between Navier—Stokes and generalized hydrodynamics calculation:
seen in Fig. 7, the Navier—Stokes calculation shows a singularity near the leading ¢
of the flat plate and yields a larger skin friction and heat flux. Conversely, the generali
hydrodynamics calculation removes the singularity, which appears in the case of the Na\
Stokes theory, and yields a smaller skin friction and heat flux. It should be noted that
DSMC result is similar to the present generalized hydrodynamics result in the qualita
features of the numerical results.

5.3. Validation Issues

The presentresults can be compared with the previous theoretical prediction by the DS
or experimental data. The validation process [31] in the present work, which concerns
assessment of the accuracy of a computational simulation by comparison with experime
data, is done largely in the qualitative aspects, but not at the level of validation quantificat
This is because of the uncertainties involving modeling parameters such as the type of g
the type of slip boundary conditions, the values of accommodation coefficients, compon
of the wall material, etc., and also because of the lack of information on the estimate
experimental uncertainty. It remains to be seen how these parameters can affect the out

With this restriction, a graphical comparison of the Navier—Stokes, generalized hyc
dynamics, DSMC, and free-molecular solutions is given in Fig. 8. The distribution of she
stresdlyy is plotted along the flat plate. The Maxwell-Smoluchowski boundary conditic
with the complete diffuse wall and the hard sphere particle model were used in the DS
result of Yasuharat al.[38]. The shear stress in the generalized hydrodynamics and DSN
increases over the first several mean free paths and peaks at about 10 mean free path
the leading edge. It then decreases over the next 20-30 mean free paths and approac
asymptotic value at the end of the plate. Such a trend can be found also in experime
data [23]. In contrast to this result, the shear stress in the Navier—Stokes solutions ree
the peak immediately, which is a sign of singularity in the continuum limit, and then ¢
clines sharply in the aft part of the plate. The magnitude of the peak in the shear stre
considerably larger than that of the DSMC method.

Since this difference of the generalized hydrodynamics from the Navier—Stokes the
with regard to the existence of singularity in the shear stress near the leading edc
consistent in the DSMC method, it can be concluded that the generalized hydrodyne
equations remove the continuum singularity in gas flows of the flat plate. The ultimate rez
for this can be traced to the fact that through the relations (2) and (3) the stress is nonline
related to the gradient of velocity in high nonequilibrium regions. As can be seenin Fig.
the behavior of shear stress becomes very different from the Navier—Stokes descriptic
highly nonequilibrium states, approaching zero as the velocity gradient increases. It is
non-Newtonian effect that allows the gradual increase of the shear stress near the le:
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FIG. 8. Comparison of shear stresdédg, along surface predicted by the Navier-Stokes, generalized hydr
dynamics, DSMC, and free-molecular theory. The solid wall beging lat= 0.

edge where a very high velocity gradient arising from the presence of the solid wal
always observed. However, the shear stress in the Navier—Stokes solutions will reacl
peak right at the leading edge where the velocity gradient becomes maximum.

6. CONCLUSIONS

As a step toward developing reliable high-order fluid dynamic computational mod
for rarefied and microscale gas flows, Eu’s generalized hydrodynamic equations have
numerically studied. The numerical results obtained by using a multidimensional cc
putational method are presented. The main emphasis is placed on the developmen
multidimensional finite-volume method for the highly nonlinear generalized hydrodynan
equations of Eu. The new equation is shown to yield solutions in rarefied hypersonic
flow over a flat plate in which the singularity in the continuum limit does not appear.

The motivation of this study was to demonstrate a possibility of using Eu’s generali:
hydrodynamics as the basis of a multidimensional computational method of rarefied
microscale gasdynamics. There can be many alternatives to the numerical method t
in the present study. In particular, a numerical method which can deal with the stiffn
problem in calculating low Mach number flows will become essential when one tries
solve low-speed microscale gas flows.

Extension to more complicated gases will present nontrivial challenges. For exam
the rotational nonequilibrium effect in diatomic gases will make the constitutive equatic
more complicated. It is also expected that the work involving a gas mixture will becol
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considerably complicated, but the same algorithms should be applicable. The resul
studies of these problems will be reported in due course.
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